Metastability for Non-Linear Random Perturbations of Dynamical Systems

نویسندگان

  • M. Freidlin
  • L. Koralov
چکیده

In this paper we describe the long time behavior of solutions to quasi-linear parabolic equations with a small parameter at the second order term and the long time behavior of corresponding diffusion processes. 2000 Mathematics Subject Classification Numbers: 60F10, 35K55.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-orbits, stationary measures and metastability

We study random perturbations of multidimensional piecewise expanding maps. We characterize absolutely continuous stationary measures (acsm) of randomly perturbed dynamical systems in terms of pseudo-orbits linking the ergodic components of absolutely continuous invariant measures (acim) of the unperturbed system. We focus on those components, called least-elements, which attract pseudoorbits. ...

متن کامل

CONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM

We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...

متن کامل

Nonlinear Stochastic Perturbations of Dynamical Systems and Quasi-linear Parabolic PDE’s with a Small Parameter

In this paper we describe the asymptotic behavior, in the exponential time scale, of solutions to quasi-linear parabolic equations with a small parameter at the second order term and the long time behavior of corresponding diffusion processes. In particular, we discuss the exit problem and metastability for the processes corresponding to quasi-linear initial-boundary value problems. 2000 Mathem...

متن کامل

Metastability, Lyapunov Exponents, Escape Rates, and Topological Entropy in Random Dynamical Systems

We explore the concept of metastability in random dynamical systems, focusing on connections between random Perron–Frobenius operator cocycles and escape rates of random maps, and on topological entropy of random shifts of finite type. The Lyapunov spectrum of the random Perron–Frobenius cocycle and the random adjacency matrix cocycle is used to decompose the random system into two disjoint ran...

متن کامل

Emergent metastability for dynamical systems on networks

We consider stochastic dynamical systems defined on networks that exhibit the phenomenon of collective metastability—by this we mean network dynamicswhere none of the individual nodes’ dynamics are metastable, but the configuration is metastable in its collective behavior. We will concentrate on the case of SDE with small white noise for concreteness. We also present some specific results relat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009